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1 Introduction

Kidneys are by far the organ with the largest demand for transplants. In Germany roughly 8,000
patients are on the waiting list for a kidney donation [1]. Although roughly 2,500 kidney trans-
plants per year took place between 2009 and 2014 [2], the number of patients on the waiting
list remained the same and the average waiting time is 5 to 6 years [3]. In other countries the
situation is even worse. Although the United States has only four times more inhabitants than
Germany, more than 100,000 people are waiting for a kidney donation. In 2015, even 3,971
patients died waiting or have been removed from the waiting list because their health severely
deteriorated [4].

A kidney is a very special organ. Humans have two kidneys, but one is sufficient to filter
waste and remove excess fluid from the body. When one kidney fails due to disease, there is a
high probability that the other kidney fails as well. Furthermore, advances in kidney retrieval
surgery have resulted in that operations are almost always successful. Research showed that the
risk of death from kidney retrieval surgery was 3 in 10,000 and that people with one kidney live
as long as those with two [5]. So each healthy person could donate one of his kidneys without
limitation of their future life.

Many patients find a relative, e.g., their spouse, who is willing to donate one of their kidneys
but that alone is not enough. The donor kidney must be compatible with the patient, i.e., the blood
type of patient and donor must be compatible and the patient’s immune system must not reject
the donor kidney. What exactly is considered as compatible differs from country to country,
depending on the assessment of the attending doctors and the additional medical treatment a
patient has to undergo before and after the transplantation.

In general one can say that the blood type according to the AB0 system should be compatible
and that patient and donor should have a negative cross-match, i.e., the patient does not have
antibodies against the donor’s tissue or blood. However, these criteria are not valid anymore due
to advances in immunosuppression treatment [6]. In Germany, 23% of the living donor kidney
transplants were AB0 incompatible in 2014 [7].

Another criterion besides the blood type is the tissue type, that is the antigens of the cells
which are categorized in the HLA (human leukocyte antigen) system. The antigens can be
grouped in six main categories which have thousands of characteristics each. Thus, a perfect
match of tissue type between patient and donor is basically impossible. As the tissue type is
mostly hereditary, a good match between direct relatives is more probable.

However, the importance of a good HLA match differs from country to country. The Euro-
pean view is that the outcome of kidney transplants from unrelated live donors is strongly influ-
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enced by the HLA compatibility [8] whereas a study from the US claims that the graft survival
probability is not dependent on the closeness of the tissue type [9].

Independent of how strict a donor kidney is selected, there will always be a lack of compatible
donors. An interesting and promising option to increase living donor kidney transplantations is
the pairwise kidney exchange. Consider the following example: the pairing of a patient and
a willing but incompatible donor. An exchange could be arranged with another incompatible
patient-donor pair so that the donor from each pair gives his kidney to the patient of the other
pair if the two pairs are crosswise compatible, i.e., the donor of patient A is compatible to patient
B and the donor of patient B is compatible to patient A.

In principle, one can perform also three or four way exchanges or even arbitrarily longer
circles. However, there is a strong ethical reason why this is disfavored. One can not make a
contract that forces a person to donate his kidney. So after patient A got a kidney from the donor
of patient B, the donor of patient A has no incentive to donate his kidney anymore because his
relative or friend has already received a new kidney. Therefore, the operations are done simulta-
neously. In a pairwise exchange, four simultaneous operations with four complete surgical teams
are already at the upper end of the logistical feasibility.

The legal situation differs from country to country. In all countries, except Iran, organ trade is
forbidden. In the past, the pairwise kidney exchange was considered a money’s worth trade and
was therefore illegal in most countries. However, the situation is changing globally. In the USA,
the national organ transplant act of 1984 clarified that paired exchanges do not violate federal
laws against selling organs [5] and the United Kingdom recently passed a law that made kidney
exchanges legal.

In Germany, the legal situation is more strict. In principle, a kidney donation is only allowed
from a closely related person. This basically forbids pairwise exchanges as the two pairs do not
know each other before they participate in a kidney exchange program. However, a ruling of the
Federal Social Court from 2003 stated that it may be performed in exceptional cases. Both pairs
have to become acquainted with each other and a psychologist has to certify the existence of an
adequately intense and firm relationship. The fact that the two pairs have first met only for a
kidney transplantation is not an argument against a close relationship [10, 11]. Thus in practice,
living-donor kidney exchanges are also possible in Germany.

Another aspect that has to be considered in a kidney exchange program is that the treatment of
patients and the registration of potential living donors is done by individual hospitals. Hospitals
tend to first search for a compatible pair among their own patients before they widen their search
and communicate it to the outside. Therefore, mainly “difficult-to-match-patients” participate in
a wider exchange program which worsens the situation for all kidney patients. So one important
demand for an algorithm to find compatible pairs is to be incentive compatible. So, a patient can
only profit by providing more information. In contrast, by not revealing all his possible donors
or compatibilities, the chance of getting a suitable match decreases.

In this thesis, I will concentrate on an algorithm for pairwise kidney exchanges. In the first
chapter I will give a general introduction into matching algorithms and apply this concept to
pairwise kidney exchanges in the next chapter. I will present a prescription to select compatible
patient-donor pairs that takes into account the priority of the patients. Then, this prescription will
be extended to also include patient-donor preferences. Finally, I will determine the benefit of an
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exchange pool in a case study using simulated patient-donor data sets.





2 Matching Algorithm

The problem of finding a maximum number of pairwise compatible patient-donor pairs out of
a pool of incompatible pairs is not trivial. In a brute-force approach all possible combinations
between all pairs would need to be considered, which is only possible for a very small number
of pairs.

However, more efficient algorithms for this problem already exist - so called matching algo-
rithms. The problem can be modeled via a graph where the nodes are the patient-donor pairs and
two nodes are connected with an edge if the two pairs are compatible to each other. A matching
is then a set of edges without common vertices, i.e., each pair can only be connected to exactly
one other pair. The so called blossom algorithm by Edmonds [12] is an efficient algorithm to
find a maximum matching. We will not give an exact formal description of this algorithms as
it is explicitly described in most textbooks (see [13] for example) but highlight its fundamental
ideas and discuss certain steps in more detail if relevant for this thesis.

The algorithm is based on the following Lemma.

Lemma 1 (Berge’s Lemma). A matching M in a graph G = (V, E)1 is maximum if and only if
there is no M-augmenting path [14].

In an alternating path the edges belong alternatively to the matching and not to the matching.
An augmenting path is an alternating path that starts and ends on free (i.e. unmatched) nodes.
Fig. 2.1a illustrates that given an M-augmenting path in a graph G, the matching size |M| can
be increased by one edge by inverting the matching along the augmenting path. So every edge
on the augmenting path that belongs to the matching is removed and every edge that does not
belong to the matching is added to it. By finding all augmenting-paths a maximum matching can
be computed.

Using Berge’s Lemma, the basic idea for a matching algorithm is to start with any unmatched
node, loop through the graph until an augmenting path is found and to use this path to increase
the matching size by one. This is repeated until no further augmenting path can be found. The
problem of finding a maximum matching is so transformed to the problem of efficiently finding
all augmenting paths. The main challenge here is to deal with circuits in the graph.

Edmond’s idea was to efficiently detect odd alternating circuits, which he called blossoms,
and to shrink them into a new pseudo node (see Fig. 2.1b). Then, the matching algorithm can run
on the shrunken graph. When all augmenting paths on the shrunken graph are found, the pseudo

1In graph theory G = (V, E) denotes a graph G with a set of vertices or nodes V and a set of edges E. A
matching M is a subset of the edges E without common vertices.
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A B C D

A B C D

augmenting path

matching

(a) Illustration of the usage of an augmenting path to in-
crease the matching size. The upper graph shows the match-
ing before and the lower graph shows the matching after the
augmentation step.

(b) Shrinking of odd circuits: The odd
circuit in the upper graph (highlighted
in blue) is shrunk into one pseudo node
(highlighted in red).

Figure 2.1: Examples of the augmentation and shrinking steps of the blossom algorithm.

nodes can be expanded again. As only odd circuits are shrunk, it is trivial to select the edges in
the odd circuit that belong to the matching. So a maximum matching of the shrunken graph can
be extended to a maximum matching of the initial graph.

The algorithm terminates after O(n2) steps where n is the number of nodes. In more de-
tail, it terminates after O(n) augmentations, O(n2) shrinking, and O(n2) tree extension steps
[13]. Improvements in the implementation reduced the run-time toO(nm log n), where m is the
number of edges.

2.1 Gallai-Edmonds Decomposition

Before describing the algorithm in more detail, we discuss the Gallai-Edmonds decomposition
of a maximum matching which is a direct outcome of the blossom algorithm. The graph can be
decomposed into three disjoint sets of nodes. See Fig. 2.2 for an illustration.

1. Inessential vertices: This set is a set of odd sets in which all but one node can be matched
by any maximum matching within the odd set. The remaining node can only be matched
with a node from the set of essential vertices. Please note that an odd set can also consist
of just one single node. In the context of kidney exchange, this set is denoted as underde-
manded patients NU.

2. Neighbors of inessential vertices: This is a set of nodes that are part of every maximum
matching. The number of nodes in this set limits the matching size, i.e., if this set would
consist of one more node, then also the matching size would increase by one. Each node
of this set is matched with a node from the set of inessential vertices. In the context of
kidney exchange, this set is denoted as overdemanded patients NO.

3. Rest: This set contains all remaining nodes and consists of even sets of nodes that can
be completely matched within each even set by any maximum matching. There is no
connection between this set and the rest of the graph in a maximum matching. In the
context of kidney exchange, this set is denoted as perfectly matched patients NP.
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Figure 2.2: Graph to illustrate the Gallai-Edmonds decomposition. The dashed lines are the
edges of the graph and the solid lines are the edges that belong to the maximum matching. The
layout of the graph already highlights the Gallai-Edmonds decomposition. The left group of
nodes labeled with “U” are the underdemanded patients, the nodes in the middle labeled with
“O” are the overdemanded patients and the nodes on the right labeled with “P” are the rest, the
perfectly matched patients.

One essential part of the blossom algorithm is needed if the Gallai-Edmonds decomposition
is determined from an already existing maximum matching. We will use the graph of Fig. 2.2 to
illustrate the process. The following description is primarily based on the textbook by Cook et
al. [13]. Using a matching M of a graph G = (V, E) and an M-exposed node r, i.e., a node that
does not belong to the matching M, we build up an alternating tree that consists of sets A and B
of nodes, such that each node in A is the other end of an odd-length M-alternating path beginning
at r, and each node in B is the other end of an even-length M-alternating path beginning at r (see
Fig. 2.3).

The alternating tree T can be constructed using the following prescription: Starting with an
unmatched node r and setting A = ∅ and B = {r} the sets A and B can be build up with the
following rule:

If vw ∈ E, v ∈ B, w /∈ A ∪ B, wz ∈ M, then add w to A, z to B. (2.1)

Fig. 2.3 shows the alternating tree T that is build up from the graph in Fig. 2.2 if started
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with node U33. The idea behind this structure is that if we find an edge vw such that v ∈ B
and w /∈ A ∪ B, then the M-alternating path from r to v together with vw is an M-augmenting
path. However, as we already start with a maximum matching M, we will not find any M-
augmenting path but we can explore the shrinking of odd circuits, another essential part of the
blossom algorithm, that will result in the Gallai-Edmonds decomposition.

Odd circuits can be detected if an edge vw with v, w ∈ B is found. Then the path in the
alternating tree T from v to w together with the edge vw forms an odd circuit that can be shrunk
to a new pseudo node. In our example this is the edge U33 to U32 and the corresponding path in
T (U33 → U31 → U32). This odd circuit can be replaced by a new pseudo node S1 resulting
in a derived graph G′ and which is then used for starting over again.

Fig. 2.3b-d shows the remaining shrinking steps. The Gallai-Edmonds decomposition is
obtained by identifying the underdemanded patients with B and the overdemanded patients with
A. This process (the creation and shrinking of alternating trees) is repeated until all M-exposed
nodes have been considered. All nodes not in A or B belong to the third part of the Gallai-
Edmonds decomposition.

All calculations in this thesis are implemented using the programming language Python [15].
We use the package Network X [16] to model graphs and to compute a maximum (weight) match-
ing. For the determination of the Gallai-Edmonds decomposition we use our own implementa-
tion. All plots have been generated using the matplotlib [17] package.
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Figure 2.3: Illustration of the four shrinking steps needed to compute the Gallai-Edmonds de-
composition of the graph shown in Fig. 2.2. The alternating tree starts at the node on the left
side. The odd circuit that is shrunk is highlighted in light blue. The resulting pseudo node is
highlighted in red.
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In this section, the before presented concepts from graph theory will be applied to pairwise
kidney exchanges. In the case of kidney exchange, the nodes in the graph are the (incompatible)
patient-donor pairs and the edges denote a crosswise compatibility between two pairs. Particular
interest will be laid on the question of which maximum matching should be used among the
potential large number of maximum matchings. The first part of this section is a short summary
of the ideas of Roth et al. [4]. Then, an alternative implementation of their prescription to match
the patient-donor pairs will be presented which allows an extension with additional patient-donor
preferences.

Note that each patient can also have more than just one donor. This results in additional
compatibilities with other patients and is modeled with additional edges between the nodes.
After a matching has been computed, one can infer from the edges in the matching which donor
of the patient is selected.

A maximum matching can be computed efficiently with the blossom algorithm that has been
presented in the previous section. However, the critical question is which maximum matching
should be selected. Roth et al. [4] give a prescription how to handle this issue which they called
priority mechanism and which will be shortly summarized here.

3.1 Priority Mechanism using the Gallai-Edmonds Decompo-
sition

A common procedure in medicine is to give each patient a priority, e.g., according to health
status, age and time on the waiting list. This is already done for the distribution of cadaver
kidneys. However, starting with the patient with the highest priority and then adding patients to
the matching with decreasing priority as long as all patients can be matched will not result in a
maximum matching. The solution to this challenge lies in the structure of a maximum matching,
the Gallai-Edmonds decomposition.

All patients in the set of perfectly matched patients NP are matched among themselves in all
maximum matchings and are completely decoupled from the rest of the graph. All patients in
the set of overdemanded patients NO are matched with a patient in the set of underdemanded
patients NU in each maximum matching as well. The assignment of a patient in NO to a patient
in NU can be different in each maximum matching. The only set of the Gallai-Edmonds decom-
position in which not all patients get matched is the set of underdemanded patients NU. So the
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problem is reduced to the problem of finding a maximum matching that maximizes the priorities
of underdemanded patients as all other patients get matched anyway.

The set NU consists of disjoint sets Di of odd cardinality. In each odd component Di all but
one patient get matched within Di. The remaining patient can only be matched with a patient in
NO, i.e., the distribution of overdemanded patients to underdemanded patients determine which
odd components Di are fully matched.

We order the odd components decreasingly according to the priority of their lowest priority
patient. Then, let D = {D1, D2, D3, ..., DN} be the ordered set of odd components with
NU =

⋃
i Di. The procedure is to first match the patients of D1 and then to continue with

the next odd component. The patients of the next odd component get fully matched only if the
previous odd components can still be matched. If one odd component can not be matched it will
be skipped. Please note that the mapping between a patient of Di to a patient of NO can change
in each step.

A formal description of this algorithm is given in [4] as follows:
For each J ⊆ D and I ⊆ NO the neighbors of the set of odd components J among overde-
manded patients in I is defined as

C(J , I) =
{

i ∈ I : ∃J ∈ J with r̃i,J = 1
}

, (3.1)

where r̃i,J denotes the existence of a link between patient i and set J and is defined as

r̃i,J =

{
1 if ∃j ∈ J s.t. ri,j = 1
0 otherwise

(3.2)

and ri,j is 1 if the patient-donor pair i is compatible with the patient-donor pair j and 0 otherwise.
The odd components that will be fully matched under the priority mechanism can be com-

puted using the following procedure.
Step 1: If |C({D1}, NO)| ≥ |{D1}| = 1, then let J1 = {D1}. This means that the odd

component D1 has a connection to NO and in this case all of its members will be matched. If
|C({D1}, NO)| < |{D1}| = 1, then let J1 = ∅. In this case all members of D1 but its lowest
priority patient will be matched.

Step k: If |C(J ∪ {Dk}, NO)| ≥ |J ∪ {Dk}| for every J ⊆ Jk−1, then let Jk = Jk−1 ∪
{Dk}. In this case all members of Dk will be matched. If |C(J ∪ {Dk}, NO)| < |J ∪ {Dk}|
for some J ⊆ Jk−1, then let Jk = Jk−1. In this case all members of Dk but its lowest priority
patient will be matched.

The result of the priority mechanism, i.e., the transformation of a maximum matching to the
maximum matching under the priority mechanism is shown in Fig. 3.1.

It was not explicitly discussed in [4] how to implement the algorithm to guarantee a polyno-
mial runtime. If the procedure is modeled in a straightforward way it is computationally very
expensive. In each step all subsets J ⊆ Jk−1 need to be considered. Thus, the runtime scales
exponentially. This is one motivation for a different implementation of the priority mechanism
which will be described in the next section.
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Figure 3.1: (left) Maximum cardinality matching. (right) Maximum cardinality matching under
the priority mechanism. The numbers in the nodes denote the priority of the patients. The dashed
lines are the edges and the bold solid lines the edges that belong to the matching.

3.2 Formulation as Maximum Weight Matching

The priority mechanism can be formulated as a maximum weight matching. This is a matching
in which not the cardinality of the matching is maximized but the sum of the weights of the edges
participating in the matching. Maximum cardinality of the matching can be achieved as well by
adding a large constant c to each edge weight. In other words, among the maximum cardinality
matchings the matching with the largest sum of edge weights is selected.

An extension of the blossom algorithm which uses a primal-dual method for finding a match-
ing of maximum weight can be used. This algorithm is also developed by Edmonds [18] and runs
in O(n3) time (n is the number of nodes) [19] which is a significant improvement compared to
the exponential scaling of the run-time found in the previous section.

In the previous sections no edge weights are used and in the priority mechanism the nodes
but not the edges have a priority. We give the following prescription to transform node priorities
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to edge weights. The edge weight is defined as

we = wa,b = pa + pb + c , (3.3)

where pa and pb are the priorities of the nodes a and b and c is a large constant with c > ∑
v∈V

pv.

With this definition of edge weights the following statement holds.

Lemma 2. The maximum weight matching is equal to the maximum cardinality matching under
the priority mechanism.

Proof. Let M1 be a matching of size |M1| = k and let M2 be a matching of size |M2| = k + 1,
then

∑
e∈M1

we = k · c + ∑
v∈M1

pv

< k · c + c because of c > ∑
v∈M1⊆V

pv

< (k + 1) · c + ∑
v∈M2

pv = ∑
e∈M2

we ,

where ∑v∈M denotes a sum over all vertices of the matching M. Hence, due to the addition
of the large constant c to each edge weight, a matching with larger cardinality has also a larger
sum of edge weights than any matching with smaller cardinality. Thus, the maximum weight
matching with edge weights as defined in Eq. (3.3) is a maximum cardinality matching.

To prove the rest of the lemma we can again use the knowledge of the structure of the graph
from the Gallai-Edmonds decomposition and consider one component after the other.

NP (perfectly matched patients): These nodes will always be matched. Thus, they have
always the same contribution to the sum of weights ∑i wi. Therefore, they have not to be taken
into account in further considerations.

NO (overdemanded patients): Here, the same argument as for NP holds. In addition, it is
irrelevant with which node from NU a node from NO is matched.

NU (underdemanded patients): For each odd component Dk at least |Dk| − 1 nodes will be
matched. If one node ∈ Dk remains unmatched, it is the node with the lowest priority, because
this maximizes the sum of weights.

Only the lowest priority node of each odd component needs to be considered (all other nodes
get matched anyway). We denote by C the collection of these lowest priority nodes. With our
definition of the edge weights, all nodes contribute linearly with their priority to the sum of
weights. Therefore, maximizing the sum of priorities of the patients v ∈ C used in the matching
is equivalent to maximizing the overall sum of weights.

∑
e∈M

we = |M| · c + ∑
v∈NP

pv + ∑
v∈NO

pv + ∑
v∈NU\C

pv︸ ︷︷ ︸
constant

+ ∑
v∈C∩M

pv , (3.4)

where pv is the priority of node (patient) v and C ∩M denotes the nodes v ∈ C that get matched
in the matching M.



3.3. Inclusion of Directly Compatible Pairs 15

The priority mechanism sorts all nodes v ∈ C according to their priority and loops through
the nodes starting with the highest priority node. A node is added to the matching if all previously
matched nodes ∈ C can still be matched. This also means that a node that is not matched in the
priority mechanism could only be matched at the expense of a node with higher priority, thus,
reducing the overall sum of weights. Hence, the priority mechanism automatically generates a
matching of maximum weight according to our definition of edge weights.

3.3 Inclusion of Directly Compatible Pairs

If a patient finds a compatible donor among his family or friends, he normally does not participate
in a kidney exchange program as he already has a compatible donor. However, his participation
would help all other patients in the kidney exchange program.

Consider the following example. Patient A has blood type “A” and his donor has blood type
“0”. A person with blood type “0” is the universal donor as his blood is compatible to all other
blood types, but this is not true for the other direction. A patient with blood type “0” can only
receive organs from donors that also have blood type “0”. So let’s assume that there is another
patient B with blood type “0” that has a donor with blood type “A”. In this case his donor is
incompatible but if patient A and B would exchange their donors, both could receive a new
kidney. Especially patients with blood type “0” would benefit from the participation of directly
compatible pairs as otherwise there is always a lack of blood type “0” donors.

The benefit of this idea will be quantized in the case study of the next chapter. Here, the
extension of the matching algorithm to also include directly compatible pairs will be presented.

The matching algorithm used so far does not allow a matching of a node with itself which
would correspond to the assignment of a patient with its own donor. This case is needed because
it can of course happen that the directly compatible pair does not find a match with another pair
in the kidney exchange pool. Then, the patient should be matched with its own donor.

We solve this problem by adding a dummy node for every directly compatible pair to the
graph and connect each of these pairs with an edge of weight zero to its dummy node. Then,
this dummy edge would only participate in a maximum cardinality maximum weight matching
if it increased the cardinality of the matching, i.e., only if the directly compatible pair can not be
matched with another incompatible pair, it will be matched with its own donor. See Fig. 3.2 for
an illustration.

3.4 Inclusion of Additional Patient-Donor Preferences

The formulation of the priority mechanism as maximum weight matching, allows the considera-
tion of additional patient preferences in the matching algorithm. Consider the following example:
A patient has two willing but incompatible donors. One donor is his spouse and the other a sec-
ond cousin. The patient would prefer to have his spouse as a donor rather than his relatively
young second cousin. This wish can now be modeled by choosing the edge weights accordingly.
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w=0

w=1

w=0

a) b)
dummy node

directly compatible pair

incompatible pair

matching

Figure 3.2: Illustration of the usage of dummy nodes. a) The directly compatible pair is matched
with an incompatible pair. b) The directly compatible pair can not be matched with an incom-
patible pair, so it is matched with its dummy node.

His wish expressed more formally is: “I want my second cousin as a donor only if there exists
no maximum cardinality matching with my spouse as a donor.”

This can be achieved by adding patient-donor preferences to the edge weights and setting the
scales of the patient priorities and the patient preferences at different orders of magnitude. One
possible extension of the edge weight definition from Eq. (3.3) would be

wab = 10 · wpreference + pa + pb + c (3.5)

where pa and pb are the priorities of patient a and b and wpreference is the additional patient-
donor preference. c is again a large enough constant to guarantee maximum cardinality of the
matching. wpreference, pa and pb is restricted to the interval [1, 2].

In our example, we set wpreference = 1 for the edge with the cousin as donor and we set
wpreference = 2 for the edge with the spouse as donor, thus giving his spouse a higher weight.
This example is illustrated in Fig. 3.3.

In practice it would be beneficial to only allow binary patient preferences, i.e., wpreference ∈
{1, 2}. This is because a patient reduces his probability to get matched if he reduces his prefer-
ence for a donor from 2 to 1. Consider two patients A and B that can only be matched with the
same patient C. Patient A has priority 2 and patient B has priority 1. If both would set the pref-
erence of their donor to 2, patient A would be matched but if patient A would set the preference
of his donor to 1, patient B would be matched. See Fig. 3.4 for an illustration.

The restriction to binary preferences is reasonable because a patient should not win against
another patient because he increased his preferences by a very small number, e.g., from 1 to
1.001. Furthermore, the default patient donor preference should be set to 2 and only patients that
come with multiple donors should decrease the preference of some of their donors to set a rank
order among their donors.

This is a clear improvement with respect to the previous situation, where the patient’s only
option to test if his preferred donor would get him matched was to conceal some of his donors.
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Figure 3.3: Illustration of usage of additional patient-donor preferences. The blue circle is the
patient with two different donors that have different weights. The numbers in the circles are the
priorities of the patients. a) The donor with the larger priority (spouse) can be used to achieve a
maximum cardinality matching. b) Only with the donor with lower priority (cousin) a maximum
cardinality matching can be achieved.
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Figure 3.4: The upper left patient has the highest priority but as he reduces the preference of his
donor from 2 to 1 he will not be matched.

Hence, our extension of the algorithm with additional patient-donor preferences even improves
the incentive compatibility of the algorithm. A patient can now name all of his donors and can
still incorporate his wish of a preferred donor.

Another usage of edge weights is to specify different levels of compatibility. Currently, a
donor kidney can be either compatible or not compatible to a patient. With edge weights, this bi-
nary compatibility can be replaced by several levels of compatibility, e.g., from “not compatible”
over “mostly compatible” to “perfectly compatible”. However, such an extension is problematic
for the incentive compatibility of the matching algorithm. A patient has a higher probability to
get matched if all his potential donors are rated as “perfectly matched”. Hence, the patient or the
attending doctors could have an incentive to not assess the patient’s health status correctly.





4 Case Study

In this chapter, the matching algorithm will be applied to simulated patient-donor data sets. The
goal of this case study is to answer questions like “How much does the number of matched
patients increase with the overall number of patients participating in the exchange pool?”, “What
is the optimal size of an exchange pool?” and “What is the influence of the blood type in a
maximum matching?”.

4.1 Simulation of Patient-Donor Data Set

The patient-donor data set is simulated to best reproduce the true situation. Each patient and
donor has two properties, its blood type and its tissue type. The distribution of blood types is
known so we can randomly chose a blood type for each patient and donor according to this
distribution. As the distribution of blood types differ from country to country, the distribution of
blood types as in Germany will be used which is shown in Fig. 4.1.

To characterize the blood type the AB0 system including the Rhesus (Rh) factor is used, i.e.,
the four main groups “A”, “B”, “AB” and “0” can each have a positive or a negative Rh factor.
A positive Rh factor implies that the red blood cells have the additional “D” antigen on their
surface. Therefore in general, a patient with negative Rh factor can donate his blood to a patient
with positive Rh factor but not the other way around.

The compatibilities between the blood types are listed in Tab. 4.1. A person with blood type
“0” is a universal donor as his blood is compatible to all other blood types, but this is not true for
the other direction. A patient with blood type “0” can only receive organs from donors that also
have blood type “0”. In contrast, a person with blood type “AB” is the universal recipient. He
can receive organs from all blood types but give his organs only to patients with the same blood
type.

So for each patient-donor pair we randomly choose a blood type for the patient and for the
donor according to the distribution in Germany. In the next step, we randomly choose a tissue
type. As discussed in the introduction, the importance of a good match in the tissue type is
assessed differently in different countries. Hence, we consider different scenarios. We start with
ignoring the patients’ and donors’ tissue type, i.e., the compatibility of a patient with a donor is
only determined by their blood types. Then, we increase the importance of a good match of the
tissue types of the patient and its donor. The four scenarios we consider are:

• All patients and donors have the same tissue type, i.e., the compatibility between a patient
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and its donor is only due to compatible blood types according to Tab. 4.1.
• 4 different tissue types, i.e., the probability of a compatible tissue type is p = 25%.
• 10 different tissue types, i.e., the probability of a compatible tissue type is p = 10%.
• 100 different tissue types, i.e., the probability of a compatible tissue type is p = 1%.
If a patient-donor pair is directly compatible (according to its blood and tissue type), we

have two options: The first option is to discard this pair and to simulate a new one. This would
correspond to the actual situation in hospitals today. If a patient already has a compatible donor,
he will not participate in a kidney exchange program. However, as we also want to study the
benefit of including already compatible pairs in the exchange program, the second option is to
not discard this pair.

To make the two sets with and without directly compatible pairs comparable, we simulate
the sets the way that the number of incompatible pairs remains the same. Suggest the number
of incompatible pairs should be 30, then it may occur that the set including directly compatible
pairs consists of 35 pairs because it contains 5 directly compatible pairs.

Thus for better comparison, we also determine the number of patients that can be matched by
counting only the patients that come with an incompatible donor and get matched in the exchange
pool. The patients with directly compatible donor will always be matched and would therefore
distort the matching size upwards if included in the determination of the matching size.

4.2 Structure of Graphs and Analysis of Gallai-Edmonds De-
composition of Patient Data

Fig. 4.2 shows the resulting graph of a data set with 30 patient-donor pairs and a probability of
tissue type compatibility of 25%. The dashed and solid lines (the edges of the graph) indicate
the compatibility of two pairs. The computed maximum matching is marked by solid lines.
Whereas the upper graph excludes directly compatible pairs, the lower graph shows the inclusion
of directly compatible pairs. In this example, the inclusion of directly compatible pairs helps one
patient with incompatible donor to find a match, in other words, one additional live can be saved.
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Table 4.1: Blood type compatibility matrix.
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Figure 4.2: (top) Example of a simulated data set with 30 patient-donor pairs. The probability for
a compatible tissue type was set to 25% (four different tissue types). The dashed lines represent
the edges of the graph and the solid lines show the edges of the maximum matching. Next to
each node the blood and tissue types of the patient and the donor are visible. E.g., “p(0-, 1)”
means that the patient has blood type “0-” and tissue type “1” and “d(A-, 0)” means that the
donor has blood type “A-” and tissue type “0”. In this example 53% of the patients can be
matched. (bottom) Shows the same example as above but includes directly compatible pairs, i.e.,
it includes patients that already have a compatible donor. These nodes and their dummy nodes
are marked in green. In this case 63% of all patients and 57% of the patients with incompatible
donor can be matched.
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Figure 4.3: Same graph as in in Fig. 4.2 top but plotted as directed graph. An arrow from node a
to node b means that the donor of patient a is compatible to patient b.

If two pairs are not compatible to each other, they are not completely independent. Often a
patient is compatible to the others patient’s donor but not the other way around. This is visible
in the directed graph in Fig. 4.3.

The Gallai-Edmonds decomposition of the simulated patient-donor data sets yield interesting
results. Other than expected from the example of Fig 2.2 the set of underdemanded patients NU

consists almost always of single nodes, i.e., each odd component of NU consists of only one
node (see Fig. 4.4 for an example). This is also true for larger data sets. Only for large data sets
(n ≥ 500), two patients per donor and a large probability of tissue type compatibility we found
an odd component with several entries.

The histograms in Fig. 4.5 show the percentage of patients in the three components of the
Gallai-Edmonds decomposition for three different probabilities of tissue type compatibility. We
discovered that this number hardly depends on the size of the data set. Consequently, the numbers
of Fig. 4.5 are the average over data sets with different input size.

The number of patients in NU increases with decreasing ptissue mainly because less patients
can be matched and all patients that can not be matched must belong to the set NU by definition.
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Figure 4.4: Gallai-Edmonds decomposition of a patient-donor data set with 30 pairs, two donors
per patient, without directly compatible pairs and a probability of tissue type compatibility of
25%. The left part is the set NU, the part in the middle is the set NO and the right part is the set
NP.
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Figure 4.5: Number of patients in the different sets of the Gallai-Edmonds decomposition for
three different probabilities of tissue type compatibility. The histograms show data sets with
only one donor per patient and without directly compatible pairs. The numbers state the average
of ten random realizations and three different sizes of the exchange pool (n = 100, 500, 1000).
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4.3 Dependence of Matching Size on Input Size

Another important result of this case study is the dependence of the number of patients that can
be matched on the size of the exchange pool. This is of practical relevance for the installation of
a kidney exchange program as it answers the question of how large the program must be to make
sense, e.g., would it be sufficient to have an exchange program in greater Aachen or should it be
complete North Rhine-Westphalia? In Germany∼8,000 patients are currently on the waiting list
for a cadaver kidney. If all of them would participate in an exchange pool, 54 patients would live
in greater Aachen and already 1736 of them would live in North Rhine-Westphalia1.

The result is shown in Fig. 4.6 where the number of matched patients versus the total number
of patient-donor pairs is presented for different probabilities of tissue type compatibility, number
of donors per patient and with/without the inclusion of directly compatible pairs (denoted as
“selfloop = 1/0”). As this number also depends on the concrete random realization of the data
set, we average over several realization of the data set for the same parameters and show the
spread as errorbar.

Going from one donor per patient to two donors per patient roughly doubles the number of
matched patients unless the number of matched patients is already saturated, i.e., its number is
already close to 100%. In the case of ptissue = 1% the improvement is even larger than a factor
of two. This is because the number of edges of the graph increases by more than a factor of two
which increases the possibilities for a maximum matching.

The improvement of the inclusion of directly compatible pairs (selfloop = 1) is most promi-
nent for large ptissue. For ptissue = 100% the number of matched patients increases from ∼30%
to almost 100%. Please keep in mind that for the number of matched patients we only count the
number of patients that come with an incompatible donor. So for a scenario where a good match
of the tissue type is not important (as in the United States), the benefit of the inclusion of directly
compatible pairs is tremendous. However, its relevance decreases with decreasing probability of
tissue type compatibility. For ptissue = 1% the effect of the inclusion of directly compatible pairs
is negligible.

The black squares in Fig. 4.6 top left, that denote a data set without the inclusion of directly
compatible pairs and irrelevant tissue type, saturate at ∼35%.. This is among other things be-
cause a patient with blood type “0” will never find a match. If he would have a compatible donor
he would not participate in this data set. Furthermore, he can only receive a kidney from a donor
with blood type “0” but a donor with blood type zero is the universal donor and is therefore
always compatible to its own patient and hence also not in this data set.

1We used the following numbers of inhabitants for this calculation: Greater Aachen: 547,661 inhabitants, North
Rhine-Westphalia: 17,638,098 inhabitants, and Germany: 81,292,428 inhabitants.
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Figure 4.6: Percentage of patients that can be matched vs. the size of the exchange pool for four
different probabilities of tissue type compatibility. The markers show the mean and the error
bars the standard deviations of at least ten realizations of the simulated data set for the specific
parameters. For data points with large scatter significantly more realizations have been simulated
to reduce the uncertainty on the mean. The squares denote data sets where only incompatible
patient-donor pairs are considered whereas the circles denote data sets where also directly com-
patible pairs participate in the kidney exchange pool. The numbers on the x- and y-axis refer
only to the incompatible pairs.
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4.4 Distribution of Blood Types in the Gallai-Edmonds De-
composition

Further insights can be gained if the distribution of blood types of patients and donors in the
different sets of the Gallai-Edmonds decomposition is analyzed. This is of interest because the
blood type compatibility is not symmetric, e.g., blood type “0” can be donated all other blood
types but a patient with blood type “0” can only receive organs from donors with the same blood
type. See Tab. 4.1 for a complete overview.

Furthermore, the occurrence of blood types is not uniform as shown in Fig. 4.1. To make the
distribution of blood types in the different components of the Gallai-Edmonds decomposition
comparable, the number of patients or donors with blood type “X” is divided by the occurrence
of blood type “X” in the population according to Fig. 4.1. Consider the following example: We
have 20 patients with blood type “0-” but only 10 patients with blood type “AB-” in the set of
overdemanded patients NO. Naively one would think that a patient with blood type “0-” is more
likely to end up in NO than a patient with blood type “AB-”. However, we must take into account
the probability that a patient has a certain blood type. In this example, the probability of having
blood type “0-” is ∼35% whereas the probability of having blood type “AB-” is only ∼4%. If
we weight the occurrence of blood type “X” in NO with its occurrence in the population, we
get 20/35% = 57 for blood type “0-” and 10/4% = 250 for blood type “AB-”. So actually a
patient with blood type “AB” is more likely to end up in the set NO.

This normalization is done in the histograms of Fig. 4.7 where the distributions for a set
of 100 patient-donor pairs, one donor per patient, ptissue = 25% and without the inclusion of
directly compatible pairs are shown. The histograms for different parameters of the data set are
qualitatively similar and therefore only shown in the appendix (Fig. A.1 - A.3).

The most prominent feature is that most donors in the set of overdemanded patients have
blood type “0-” which is not surprising as a person with blood type “0-” is the universal donor.
In contrast, only a small number of patients with blood type “0-” are in the set of overdemanded
patients and for the set of underdemanded patients it’s the other way around. A large number of
patients with blood type “0-” are in NU, which means that a lot of them can not be matched, and
only a small number of donors with blood type “0-” are in NU.

Patients with blood type “AB-” are the universal recipients. Therefore, their occurrence in
NO is frequent. In contrast, donors with blood type “AB-” can only donate their kidney to
patients with the same blood type. Hence, their occurrence in NO is very small.

Concluding, a patient with blood type “AB” or a patient that comes with a donor with blood
type “0” has good chances to get matched whereas a patient with bood type “0” or a patient that
brings a donor with blood type “AB” has the lowest chance to get matched.
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Figure 4.7: Distribution of blood types of patients (left) and donors (right) grouped in the three
sets of the Gallai-Edmonds decomposition: underdemanded patients (top), overdemanded pa-
tients (center) and perfectly matched patients (bottom). The histograms show the average of 10
realizations of a data set with 100 incompatible patient-donor pairs, a 25% probability of tissue
type compatibility and only one donor per patient.





5 Summary

The usage of living donors has a promising potential to satisfy the large demand of kidney trans-
plants. Advances in medicine nowadays allow a healthy person to donate one of his kidneys
without the risk of death or any limitation in his future life. However, finding a compatible
donor among family and friends of a patient remains difficult. One solution for this problem is
a kidney exchange pool in which many incompatible patient-donor pairs are registered. Then,
an incompatible patient-donor pair can be matched with another incompatible pair such that they
are crosswise compatible, i.e., the donor of the first patient is compatible to the second patient
and vice versa.

The maximum number of compatible pairs in such a kidney exchange pool can be computed
efficiently with a matching algorithm where the problem is modeled as a graph in which the
patient-donor pairs are represented by the nodes and the edges denote a crosswise compatibility
between two pairs. Normally, this combination is not unique but several maximum matchings
exist. We discussed a prescription, the so-called priority mechanism, to select the maximum
matching that maximizes the priority of the patients. This algorithm is already discussed in
literature and makes use of the Gallai-Edmonds decomposition. We give an alternative imple-
mentation that runs in O(n3) time and uses a maximum weight matching algorithm where the
priorities of the patients are transformed into edge weights.

This new formulation of the priority mechanism allows for an extension of the algorithm that
takes additional preferences of the patients into account. We discussed the case where a patient
has two willing but incompatible donors. With our extension of the algorithm this patient can
now declare a preferred donor.

Furthermore, we studied the benefit of the implementation of an exchange pool on simulated
patient-donor data sets. The compatibility between a patient and a donor is determined by the
blood and tissue type, whereby the importance of a good match of tissue type is evaluated differ-
ently in different countries. Hence, we performed this case study with four different assumptions
of the importance of a good tissue type match.

We determined how many patients will find a match in an exchange pool of a certain size
on average. For a probability of 25% that patient and donor have a compatible tissue type,
and considering only patients that come with an incompatible donor, we found that ∼60% of
the patients will be matched if the exchange pool has a size of 300 patient-donor pairs. If we
increase the number of donors that each patient brings to the exchange pool from one to two,
already more than 90% of the patients will find a match.

We also studied the impact of patients participating in an exchange pool who have already



30 Summary

found a compatible donor. These patients must always be matched but not necessarily with their
own donor. In the scenario where a good match of the tissue type is considered unimportant, the
improvement is largest. The number of patients with incompatible donor that can be matched
increases from 30% to 90% if patients who already come with a compatible donor are included
in the exchange pool.

Concluding, living donor kidney exchanges in combination with the establishment of kidney
exchange pools can solve the large demand of kidney transplants.
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Figure A.1: Same as Fig. 4.7 but for a data sets with 500 incompatible patient-donor pairs, a 25%
probability of tissue type compatibility and only one donor per patient.
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Figure A.2: Same as Fig. 4.7 but for a data sets with 1000 incompatible patient-donor pairs, a
25% probability of tissue type compatibility and only one donor per patient.
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Figure A.3: Same as Fig. 4.7 but for a data sets with 1000 incompatible patient-donor pairs, a
10% probability of tissue type compatibility and only one donor per patient.
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lungen und Tabellen selbstständig angefertigt und keine anderen als die angegebenen Hilfsmittel
und Quellen verwendet habe. Alle Stellen, die dem Wortlaut oder dem Sinn nach anderen Wer-
ken entnommen sind, habe ich in jedem einzelnen Fall unter genauer Angabe der Quelle deutlich
als Entlehnung kenntlich gemacht.

Aachen, den 14. Februar 2016

Christian Glaser




	Introduction
	Matching Algorithm
	Gallai-Edmonds Decomposition

	Priority Mechanism
	Priority Mechanism using the Gallai-Edmonds Decomposition
	Formulation as Maximum Weight Matching
	Inclusion of Directly Compatible Pairs
	Inclusion of Additional Patient-Donor Preferences

	Case Study
	Simulation of Patient-Donor Data Set
	Structure of Graphs and Analysis of Gallai-Edmonds Decomposition of Patient Data
	Dependence of Matching Size on Input Size
	Distribution of Blood Types in the Gallai-Edmonds Decomposition

	Summary
	Appendix
	References

