

Generative Models: Part I

- Variational Autoencoders
- Generative Adversarial Networks

Jonas Glombitza, Martin Erdmann

RWTH Aachen

21.03.2022 Deep Learning Weeks, Uppsala

Outline

- I. Deep Learning Basics short hands-on
- II.Convolutional Neural Networks short hands-on

BREAK

- III.Introduction to Generative Adversarial Networks (GANs)
- IV. Tutorial: Implementation of GANs

- V.Latest developments & advanced techniques
 - Wasserstein GANs
- VI.Application in physics research
 - Simulation acceleration, domain adaption

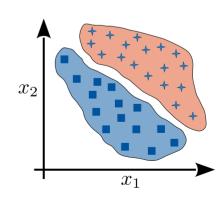
BREAK

VII.Tutorial: Implementation of Wasserstein GANs

Feel free to ask questions during the seminar!
Just "raise" your hand...

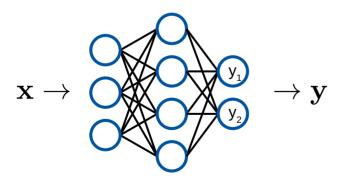
Supervised and Unsupervised Learning

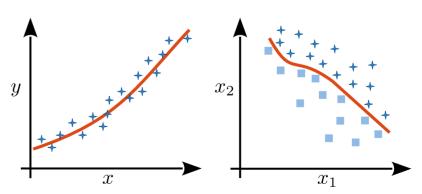
- Generative Models
 - Variational Autoencoders
 - Generative Adversarial Networks



Supervised Learning

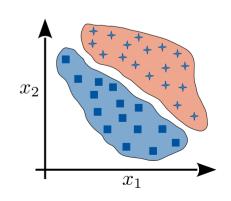
- Situation
 - Large labeled data set (pair of input x and output y)
- Typical Task:
 - Learn function to map input to specific output
 - Train model to predict the associated label
 - Achieve best generalization performance
 - Infer *conditional* probability density $p(\mathbf{x}|\mathbf{y})$



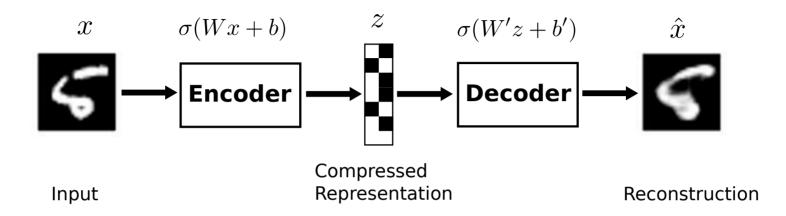


Unsupervised Learning

- Typical situation: non labeled data set
- Tasks:
 - Learn (low dimensional) data encodings → autoencoders
 - Estimate underlying probability density → *generative models*
 - Clustering, anomaly detection find (non-) similar samples
- Infer a priori probability density p(x)
- Models typical trained without label information
 - Contrast: semi-supervised learning



Recap: Autoencoders



- Reconstruction of input data (approximation of identity function)
- Learning interesting representation (constraints to hidden layer)
- Objective function:

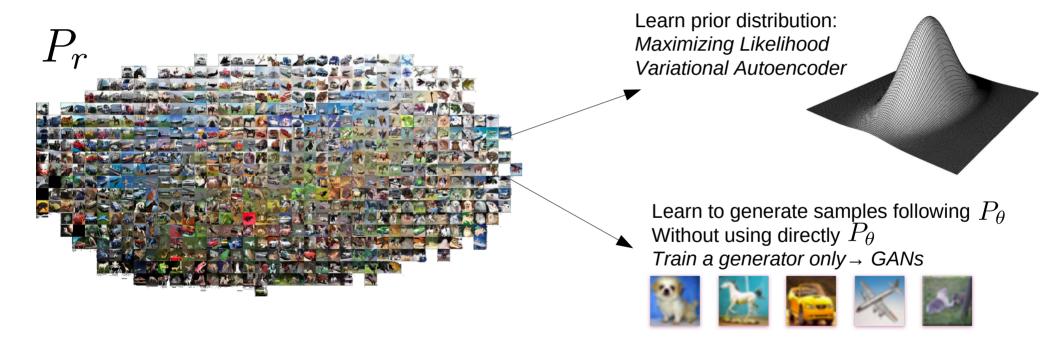
$$\mathcal{L}(\mathbf{x}, \hat{\mathbf{x}}) = \frac{1}{N} \sum_{i=1}^{N} (\hat{\mathbf{x}}_i - \mathbf{x}_i)^2$$

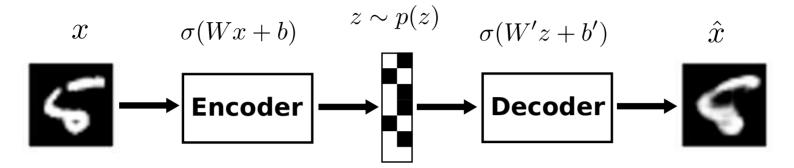
Deep autoencoders often show underfitting → use shortcuts!

Generative Models

Approximate data distribution P_r with another distribution P_{θ}

 θ = distribution parameters

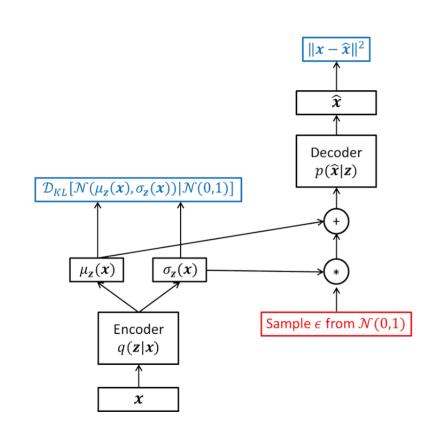




- Learned representation is not an arbitrary function
 - > Impose *prior distribution* on the hidden (low dimensional) representation
- Trained decoder part can be used as generator (sample from prior distribution)
- Objective function = reconstruction error + divergence of hidden representation from a prior

$$\mathcal{L}(\mathbf{x}, \hat{\mathbf{x}}, \mathbf{z}) = \mathcal{L}_{recon.}(\mathbf{x}, \hat{\mathbf{x}}) + \mathcal{D}_{KL}[q(\mathbf{z}|\mathbf{x})|p(\mathbf{z})]$$
$$= \frac{1}{N} \sum_{\mathbf{x}} \left[||\mathbf{x} - \hat{\mathbf{x}}||^2 + \sum_{\mathbf{z}} q(\mathbf{z}|\mathbf{x}) \log \frac{p(\mathbf{z})}{q(\mathbf{z}|\mathbf{x})} \right]$$

Kullback-Leibler Divergence: \mathcal{D}_{KL} Measure of information loss if $p(\mathbf{z})$ is used instead of $p(\mathbf{z}|\mathbf{x})$



Gaussian prior: $z \sim \mathcal{N}(0, 1)$

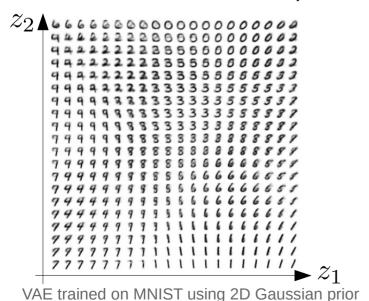
- Encoder $q(\mathbf{z}|\mathbf{x})$ learns latent parameters $\mu_{\mathbf{z}}(\mathbf{x}), \sigma_{\mathbf{z}}(\mathbf{x})$ of Gaussian distribution
- Re-parametrization $z=\mu_{\mathbf{z}}(\mathbf{x})+\sigma_{\mathbf{z}}(\mathbf{x})\epsilon$ with $\epsilon\in\mathcal{N}(0,1)$
- Example: 2D Gaussian
 - Only two independently normal distributed parameters in hidden layer for each input

•
$$\mathcal{D}_{KL}[\mathcal{N}(\mu_z(\mathbf{x}), \sigma_z(\mathbf{x})) | \mathcal{N}(0, 1)]$$

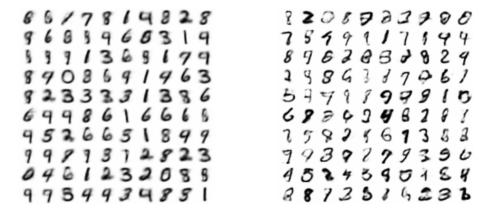
= $\frac{1}{N} \sum_{\mathbf{x}} \int_{\mathbf{z}} dz \, \mathcal{N}(\mu_z, \sigma_z) \log \frac{\mathcal{N}(0, 1)}{\mathcal{N}(\mu_z(\mathbf{x}), \sigma_z(\mathbf{x}))}$
= $\frac{1}{N} \sum_{\mathbf{x}} \frac{1}{2} (1 + \log \sigma_z^2(\mathbf{x}) - \mu_z^2(\mathbf{x}) - \sigma_z^2(\mathbf{x}))$

Objective:
$$\mathcal{L}(\mathbf{x}, \hat{\mathbf{x}}, \mathbf{z}) = MSE(\mathbf{x}, \hat{\mathbf{x}}) + \mathcal{D}_{KL}[q(\mathbf{z}|\mathbf{x})|p(\mathbf{z})]$$

- Mean-squared-error: → How accurate input can be reconstructed
- KL-divergence: → How close the latent variables match (unit Gaussian)
- Allows walk in latent space

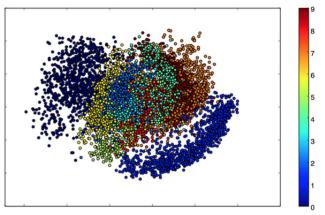


Improved quality for increased size of latent space



(a) 2-D latent space

(d) 20-D latent space



Latent space of VAE trained on MNIST

- Samples of Variational Autoencoders often look noisy
 - Gaussian prior not always best choice / can use arbitrary prior distribution
 - Gaussian distributions can not capture all modes of the data
 - Mean-squared-error loss very inflexible
- ➤ Try adversarial approach → Only train a generator Tutorial on Generative Models Glombitza | RWTH Aachen | 03/21/22 | Deep Learning Weeks, Uppsala

Introduction to GANs

- Adversarial training
- Design of GANs
- Conditioning

Generative Adversarial Networks - GANs

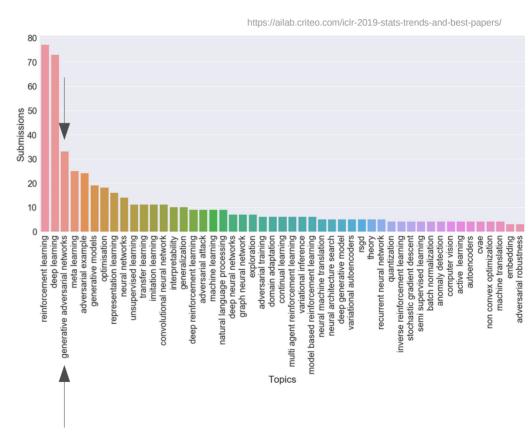
Künstliche Intelligenz

Auktionshaus versteigert erstmals KI-Gemälde

Kein Maler sondern ein Computer-Algorithmus hat das Porträt "Edmond de Belamy" erschaffen. Beim Auktionshaus Christie's zahlte ein Interessent dafür knapp 400.000 Euro.

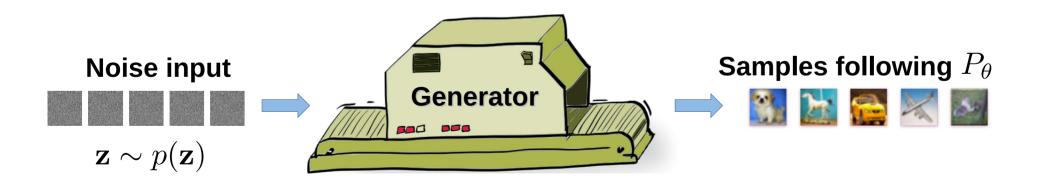
26. Oktober 2018, 9:00 Uhr / Quelle: ZEIT ONLINE, AFP, fo / 75 Kommentare

Der verschwommene Druck "Edmond de Belamy" zeigt einen Mann in dunkler Kutte mit weißem Kragen, der an einen französischen Geistlichen erinnert. © Christie's/dpa



How to train a Generator

- I. Objective: learn to generate new samples following P_{θ}
- II.Learn a function that transform a distribution $p(\mathbf{z})$ into P_{θ} using a generator G_{θ} $\mathbf{z} \in Z \to \mathsf{latent}$ space
- III.Generator G_{θ} is implemented as neural network with weights θ



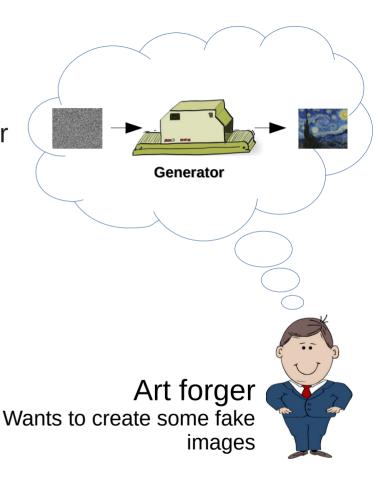
Generative Adversarial Networks

I. Hard to formulate a supervised training loss

II.Use unsupervised training to train the generator

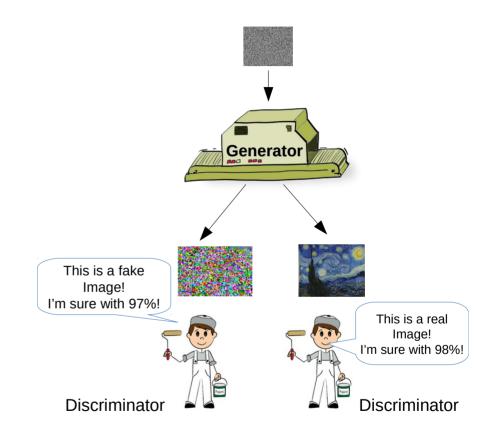
- ightharpoonup Objective: $P_{\theta} pprox P_r$
- Measure: given by second neural network
- → Generated samples of generator should be similar to real samples after training
- without reproducing training data
- → Adversarial approach:

Train 2 networks adversarial (against each other)



Generative Adversarial Networks

- I. Generator
 - Try to generate realistic samples
- **II.** Discriminator
 - Try to discriminate between fakes and realistic images
 - ightharpoonup Evaluate if $P_{\theta} pprox P_r$
- III.Discriminator returns probability if generated sample is real

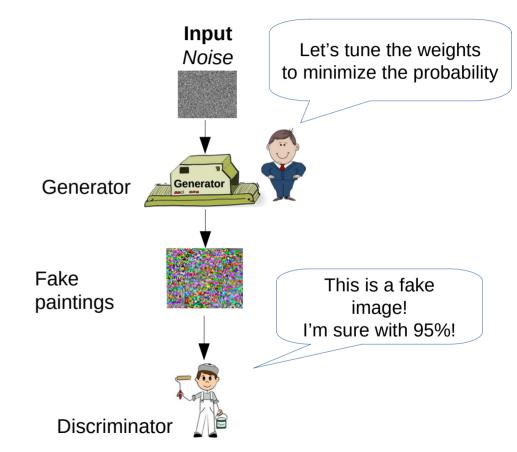


"GANs is the most interesting idea in the last ten years in machine learning." - Y. LeCun

Train Discriminator

Input Noise Generator Input Real paintings Fake paintings Discriminator

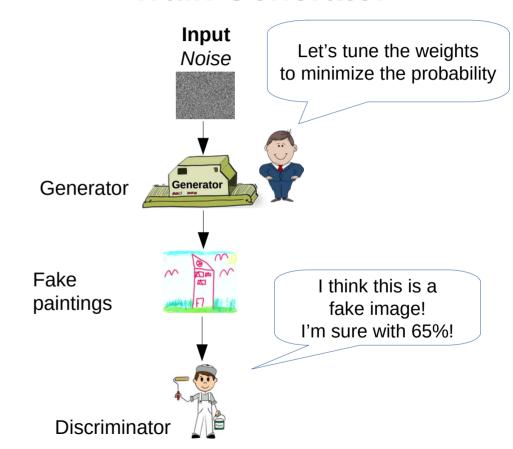
Train Generator



Train Discriminator

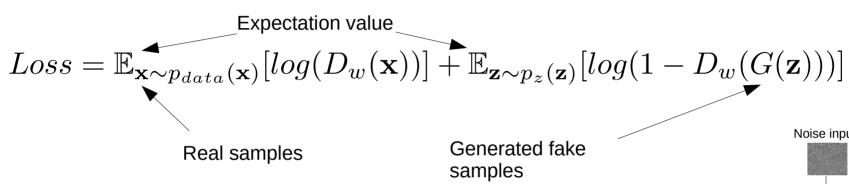
Input Noise Generator Input Real paintings Fake paintings Discriminator

Train Generator

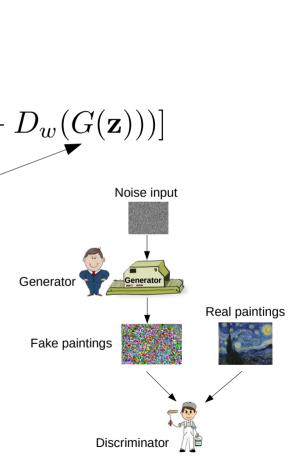


Train the Discriminator

I. Implemented as neural network $\,D$ having weights w



- II. **Maximize** loss → minimize binary cross entropy
 - Tuning discriminator weights
- III. Typical classification task for neural network
 - Learns to separate two classes



Train the Generator

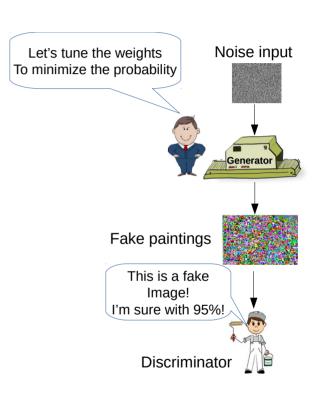
I. Optimal discriminator is freezed

$$Loss = \mathbb{E}_{\mathbf{z} \sim p_z(\mathbf{z})}[log(1 - D(G_{\theta}(\mathbf{z})))]$$

- II. **Minimize** loss: → maximize binary cross entropy
 - \succ Tuning the generator weights θ
 - Discriminator should fail to discriminate

III. Best case: coin flipping

$$D(G(\mathbf{z})) = \frac{1}{2} \qquad D(\mathbf{x}) = \frac{1}{2}$$

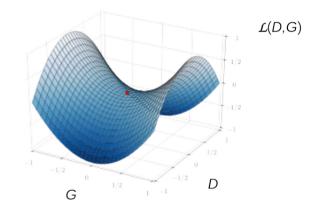


GAN Training

$$\min_{C} \max_{D} L(D, G) = \mathbb{E}_{\mathbf{x} \sim p_{data}(\mathbf{x})}[log(D(\mathbf{x}))] + \mathbb{E}_{\mathbf{z} \sim p_{z}(\mathbf{z})}[log(1 - D(G(\mathbf{z})))]$$

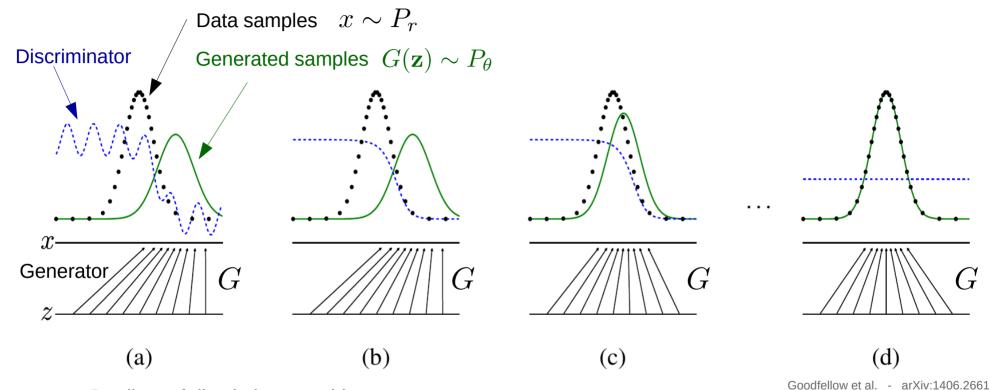
Training 2 networks at the same time is challenging Losses of discriminator and generator are highly dependent

- I. Train generator and discriminator alternating
 - Min/Max game
 - Sum of both players is zero



- II.Finding Nash equilibrium is hard
 - Discriminator and generator need to have same quality
 - Minimize Jensen-Shannon divergence (assume optimal discriminator)

Optimal Evolution of GAN Training



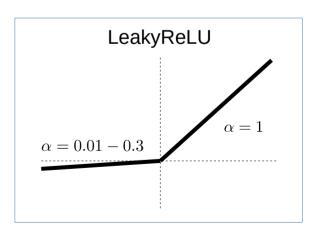
Gradient of discriminator guides generator

 \rightarrow G generates samples which are more likely identified as data

Epochs -

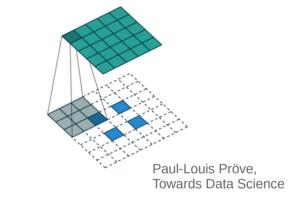
Network Design

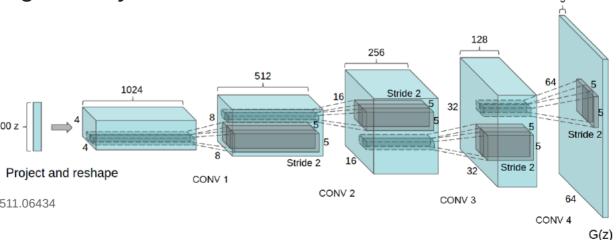
- Discriminator / classical DCNN for classification
 - Use sigmoid (1 output node) / softmax (2 output nodes) after last layer
- DCGANs (Deep Convolutional GANs) show improved stability
- Use Deep Convolutional generator and discriminator:
 - I. Use batch normalization
 - II. Remove fully connected hidden layers
 - III.Use ReLU in the generator
 - IV.Use LeakyReLU in the discriminator
 - V. Use transposed convolutions



Deep Convolutional GAN (DC-GAN)

- I. Topology of the generator:
 - Decrease feature space
 - Increase spatial extent
- II. Supports a simple structured latent space
- III. Use transposed convolutions + striding
- Shows improved training stability





Implementation: Adversarial Training

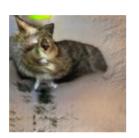
Generate fake samples \tilde{x} similar to real samples x

- I. Train discriminator
 - > Sample noise z, feed it into the generator to generate fake samples $G(z) = \tilde{x}$
 - \triangleright Train discriminator to classify fake \tilde{x} and real samples x
- II. Train generator using the discriminator feedback
 - Freeze parameters of discriminator
 - > Generate fake samples $G(z) = \tilde{x}$ and pass it to the discriminator
 - \triangleright Adapt weights of G by fooling the discriminator D
- III.Unfreeze parameters of the discriminator

```
# freeze / unfreeze layers in a model
for layer in model.layers:
    layer.trainable = True  # False
# update parameters for a single batch
loss = model.train_on_batch(x, y)
```

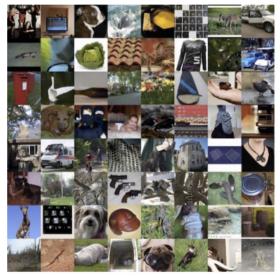
Generative Adversarial Networks

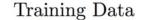
Wrong global structure



Wrong body parts

ImageNet





Samples

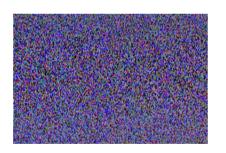
Manifold Hypothesis

Idea: Manifolds of meaningful pictures are highly concentrated with very little volume and embedded in a very high dimensional space

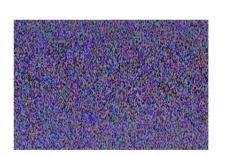
- I. Generation of images is a very challenging task
- II. Correlations / probability dimension are high dimensional

Example: Try to generate images randomly:

Goal



Sample 1



Sample 100,000

You will even never reach this "neighborhood sample"

"To deal with a 14-dimensional space, visualize a 3-D space and say 'fourteen' to yourself very loudly.

Everyone does it." - G. Hinton

Evolution of GANs - 2016

monarch butterfly Odena, Olah, Shlens - arXiv:1610.09585

goldfinch

daisy

Evolution of GANs

bunting

Zhang, Goodfellow, Metaxas, Odena - arXiv:1805.08318

GANs not perfect...

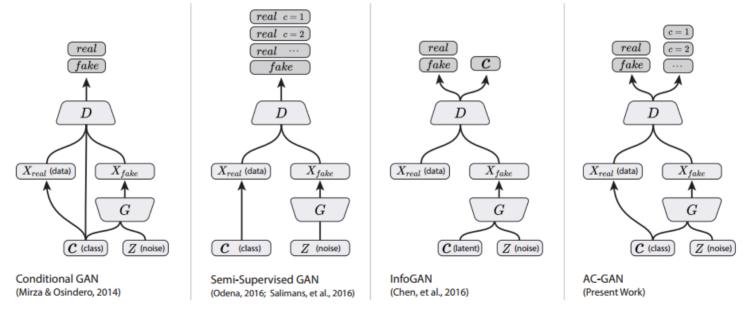
Brock, Donahue, Simonyan - https://arxiv.org/abs/1809.11096

Karras, Alla, Laine, Lehtinen - arXiv:1710.10196

→ Much better images in the next lecture...

Conditioning of GANs – Semi Supervised

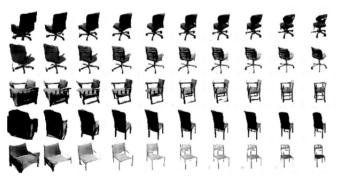
- Constrain generator to learn conditional probability distribution
 - Reduce complexity of latent space, allow for interpretations
- Feed generator and discriminator additional information (e.g. class labels: dog)
 - Force generated samples show specific characteristics (label dependencies)



Conditioning of GANs

InfoGAN

(a) Rotation



(b) Width

Chen et al. 2016

Conditional image synthesis

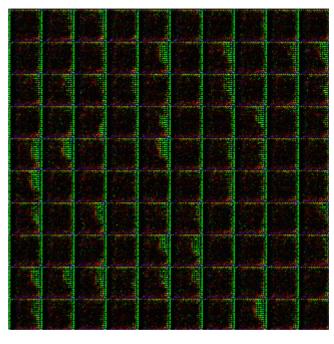
A. Odena et al. 2016

H. Zhang et al. 2018

Field of generative model is growing very fast

VAE vs GAN

VAE



GAN

https://blog.openai.com/generative-models/

Next Lecture: Advanced Techniques

https://www.whichfaceisreal.com/

• Which picture is generated, which picture is part of CELEB A data set?

Summary

Generative Models

Generation of new samples using approximation of underlying data distribution

Variational Autoencoder

- Hidden representation follows low dimensional arbitrary prior distribution
- Trained decoder part can be used as generator to produce new samples

Generative Adversarial Networks

- Hand-coded loss is replaced by discriminator (tries to discriminate between fake samples and real samples)
- Adversarial training: generator and discriminator trained against each other
- Generator tries to fool discriminator
- Use conditioning to create prior on latent space

References & Further Reading

- M. Erdmann, J. Glombitza, G. Kasieczka, U. Klemradt, Deep Learning for Physics Research World Scientific, 2021, www.deeplearningphysics.org/
- I. Goodfellow, Y. Bengio, A. Courville, Deep Learning, Chapter 7 / 8 / 9, MIT Press, 2016, www.deeplearningbook.org
- Kingma, Welling: Variational Autoencoder https://arxiv.org/abs/1312.6114
- Makzhani et al.: Adversarial Autoencoders https://arxiv.org/abs/1511.05644
- Goodfellow et al.: Generative Adversarial Networks https://arxiv.org/abs/1406.2661
- Odena et al.: AC-GAN https://arxiv.org/abs/1610.09585
- Radford et al.: DCGAN https://arxiv.org/abs/1511.06434
- Zhang et al.: SAGAN https://arxiv.org/pdf/1805.08318.pdf

Tryout Deep Learning Yourself!

Find many physics examples at: http://www.deeplearningphysics.org/

For example:

- CNNs, RNNs, GCNs
- GANs and WGANs
- Anomaly detection, Denosing AEs
- Visualization & introspection and more

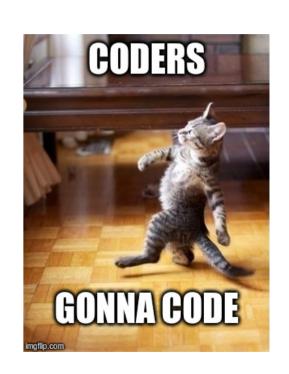
Tutorial

Open jupyter notebooks in google colab:

You can find the repository at:

https://github.com/jglombitza/tutorial_generative_models

Open PART I: Vanilla_GAN.ipynb



Arithmetic in Latent Space

Idea: Discover structure of the latent space

 Can we do arithmetic with latent vectors of generated samples which represent different characteristics?

$$\mathbf{z}_{king} - \mathbf{z}_{man} + \mathbf{z}_{women} = \mathbf{z}_{queen}$$
?

Average over several samples to get representation vector

