Introduction to normalizing
flows (1/2)

Thorsten Glisenkamp, 28.3. 2022, Uppsala .

Overview

Today:
1) Introduction to normalizing flows
2) Linear/Affine flow
(1-d / N-d)
3) Hands-on1
4) Non-linear 1-d examples
5) Non-analytic inverses:

6)

Example: Mixture model
Hands-on 2

Wednesday:

1) Various N-d non-linear generalizations

2) Conditional PDFs: Amortization and the
connection to deep learning

3) A NF tool: jammy_flows

4) Hands-on 1

5) Probabilistic deep learning and variational
inference

6) Coverage / Systematics / Goodness-of-Fit

7) Hands-on 2

What are normalizing flows? ... specific probability density functions

Some well-known techniques to construct PDFs:

B-spline basis example (degree=3)

0.15
!

Density function
0.10
L

0.05
L

- (arbitrarily) Complex PDF shape
- Evaluate probability analytically
- WorksinD>1

o DN NS N
Sl 7 238 Na YOS
= T | L1

Mixture models /
Kernel Density Functions B-Spline representation of a PDF

Normalizing flows are also PDFs, but richer functionality:

- (arbitrarily) Complex PDF shape

" - Evaluate probability analytically

. - WorksinD>1

0 - Generate differentiable samples (-> differentiable expectation values)
- Coverage of the PDF

- Can be interpreted as generalizations of the Gaussian distribution

. - Works on manifolds

2

Definition

Base p.(?2)

Flow defining function

05

04

03

02

01

00

Definition

o1"\(@)

det——
Jdr

p(F) = po(f~1(T)) -

Base p.(?2)

f(2) Target p(T)

00

H liﬁl
I}

-

-y

=

N
Q\;l
A1)
AT
Wy
iy
(111}
77111]
77]]]

T
7/

72277

Z2
-

1) The function has to be bijective for the
inverse!

2) The function has to be differentiable!

......
cﬂ:=‘
SSSN,

S

Q ‘Q\

()
)
1’]

i
s
e

”’
)

Q)
o
O
%%
%%

=224
7]

Q

N
N
N
N
~

R
X
o
020503
=%
Z,
-~
-~
4

85
&

O
<O

‘P
N

= Diffeomorphism

Ve
o
MBS

\3
WY
—
-
[1727
[17727

[]

Definition

. Log probability includes
Local “stretching”/"squeezing”
Of volume element

p(T) = po(fH(E)) - |detJ 1 (Z)

Base p.(?2)

f(2)

00

1111 A
"l’,’l’,’—

\
i
[]

7

(!

Sa%in

4 1111

- ”l’l”'

7277
i

LT
==
“\\
3
“
(Y
!
7
7771111

-

7
”

o
RN
A\

1\

1) The function has to be bijective for the
inversel! = Diffeomorphism

2) The function has to be differentiable!

’l
7z
%
%,
0%,
R
5
o,
9%
X

2/

7/
l:l,’
]
159%%>
s
S
“
o

[L7777

"Il’l
Z
e

=
7271111

N

[]

Definition

. Log probability includes
. A/

[detJ(f~1(Z))] Local “stretching”/"squeezing”
Of volume element

Base p.(?2)

00

.
e i
o

7ZA
-
S

1) The function has to be bijective for the
inversel! = Diffeomorphism

2) The function has to be differentiable!

-
-
1/

Definition

Sampling is also straight forward: 7 = f(2)
Must be able to sample from base distribution!

Base p.(?2)

Definition

Sampling is also straight forward: e &~
piing g Ty = fg(:) 3 r-1(3
Must be able to sample from base distribution! po(T) = pol : 1(;;-‘)) . |det af ({) _‘(J)
or
Base p.(?) '
fo(2) Target po(7)

05
04
03
02
00

Sampling is also straight forward: 79 = fo(Z) 1) Differentiable prob.
= & ar—li=
Must be able to sample from base distribution! po(Z) = polf; L(F)) - |det af 0‘) q(l)
or
Base p.(?)

ft)(f‘) Target po(7)

05
L~ = 04

-0.5
" 03

-1.0
02

-15
01

-2.0
00

iy
%

e

2) Differentiable samples!

1) Differentiable prob.

Sampling is also straight forward: s &~
o ’ %o = fo(?) 0fy ' (T)
Must be able to sample from base distribution! po(T) = pol(f; () - |det g 0‘)_. =
OF
Base p.(Z) ’
fo(2) Target po(3)

A / 075
1 @Q iﬁ:

Crosscheck
with contours =

iy
%%

e

2) Differentiable samples!

1) Differentiable prob.

Sampling is also straight forward: s &~
o ’ %o = fo(?) 0fy ' (T)
Must be able to sample from base distribution! po(T) = pol(f; () - |det g 0‘)_. =
OF
Base p.(Z) ’
fo(2) Target po(3)

A / 075
1 @Q iﬁ:

iy
%%

e

Unique and important!

2) Differentiable samples!

Sampling is also straight forward: s &~
pling g zp = fo(2) 81-1(2)
Must be able to sample from base distribution! po(T) = po(f, L(Z)) - |det 0‘)_‘ '
Jr
Base p.(Z) ’
fo(2) Target po(3)

/

o0s Typically work with logarithm for numerical stability H
=

afy ' (%)

det ———

iy -

“ In(pa(#) = In(po(/() + n (|aet Lo

——— 1) Differentiable log-prob.
2) Differentiable samples!) unique and important!

Differentiable Samples -> Differentiable expectation values

N
1
Iy = /po(;r)Fa(;r)dm ~ N Z Fy(x4)
Examples:
1 N
n-th moment of p /pg(:t):):"d:r g Zg;g
entropy / po(x)log (pe(x)) dx Z —logpg(zg)

... Many other integrals in information theory

Differentiable Samples -> Differentiable expectation values

N
1
Iy = /po(;l‘)Fa(;l‘)d:L‘ ~ N Z Fy(x4)
Examples:
1 N
n-th moment of p /pg(l‘):}:”dﬂ: S5 .Zg;g
3 B Wrong gradient!
entropy - /‘PG(I)lOg (po(z)) do =~ N Z —logpg(xg)

... Many other integrals in information theory ’ i

The simplest possible normalizing flow

Let us try to see the distribution of the simplest _— B
possible normalizing flow in 1 dimension! z=f(2) =

The simplest possible normalizing flow

Let us try to see the distribution of the simplest . —
possible normalizing flow in 1 dimension! z=f(2)=a-z+ 0 = {a,b}

The simplest possible normalizing flow (1-d)

Let us try to see the distribution of the simplest
possible normalizing flow in 1 dimension!

Use Standard normal base distribution
(we will always use the standard normal
for convenience)

Base distribution Change of variables formula Inv. Flow function
nal2) = ! E .22 — ~1(= fG () PR o _:I.Y—b
pO(“) Lok m e‘q)(0 S) pﬂ(-l/) — p()(fo (.L)) d(’t d_l' ~ f (‘l a

The simplest possible normalizing flow (1-d)

Let us try to see the distribution of the simplest
possible normalizing flow in 1 dimension!

Use Standard normal base distribution
(we will always use the standard normal
for convenience)

Base distribution Change of variables formula Inv. Flow function
nal2) = ! E .22 — ~1(= fG () PR o _:I.Y—b
pO(“) Lok m e‘q)(0 S) pﬂ(-l/) — p()(fo (.L)) d(’t d_l' ~ f (‘l a

The simplest possible normalizing flow (1-d)

Let us try to see the distribution of the simplest
possible normalizing flow in 1 dimension!

Use Standard normal base distribution
(we will always use the standard normal
for convenience)

“Linear flow” = “general Gaussian distribution” in 1d

Change of variables formula Inv. Flow function
afy () b

det —5—xu-— a

Base distribution

-exp(—0.5 - 2%) po(T) = Po(fg—l(f)) '

z=f"12) =

po(z) =

o

or

ﬂw
5

The simplest possible normalizing flow (1-d)

Let us try to see the distribution of the simplest
possible normalizing flow in 1 dimension!

Use Standard normal base distribution
(we will always use the standard normal
for convenience)

“Linear flow” = “general Gaussian distribution” in 1d

Technically, this is 2-step flow: f(z) = fa(f1(2))

13 i fo(z) =2+D

The simplest possible normalizing flow (n-d)

Let us try to see the distribution of the simplest . i s D
possible normalizing flow in n dimensions! T=f(8)=L""-Z+b
Use Standard normal base distribution
(we will always use the standard normal
for convenience)

Base distribution Change of variables formula Inv. Flow function
1 e oy e J . 2 ass R
me) = el 05 T3 @) = ol @) 12 D) = 1D

p(z) = . |det(L)| - exp (—0.5 (L(Z - b)T - (L(Z - 13‘)))

ﬁ_
=

The simplest possible normalizing flow (n-d)

Let us try to see the distribution of the simplest -
possible normalizing flow in n dimensions! >

Use Standard normal base distribution
(we will always use the standard normal
for convenience)

Change of variables formula Inv. Flow function

af, (&
or

Base distribution

detZe %) =17 =L(EF-b)

po(T) = po(f, '(F)) -

1 =
po(2) = —— - exp(—0.5-37 .
Po(z) 2.0 p(

p(x) - |det(L)| - exp (—0.5 ZE-b0T - LT-L-(¥- 5))

;

The simplest possible normalizing flow (n-d)

Let us try to see the distribution of the simplest B -1
possible normalizing flow in n dimensions! T=f(?)=L +b
Use Standard normal base distribution i"’ , 9
(we will always use the standard normal - w e
for convenience) =0 L=t &
_fv;,l er;.2 . ~: en.n—.-l zn,n i
Base distribution Change of variables formula Inv. Flow function
1 e oy e 13 . S RSs . =
)= 05 (@) = ol @) e D] s= @ = - D

The simplest possible normalizing flow (n-d)

Let us try to see the distribution of the simplest -
possible normalizing flow in n dimensions! 5

Use Standard normal base distribution Gt =37
(we will always use the standard normal
for convenience)

“Affine flow” = “general Gaussian distribution” in n-d

Base distribution Change of variables formula Inv. Flow function
1 e ‘g e J . C R I
PO = (0579 @ =o' @) - [0 D] = @) = @)
(2 =)™ oF
p(x) = L exp (—0.5-(:1".'—1—)')'1"(3'"l . (i'—l_)‘))

V2 -m-det(C)

The simplest possible normalizing flow (n-d)

Let us try to see the distribution of the simplest -
possible normalizing flow in n dimensions!

Use Standard normal base distribution Gt =37
(we will always use the standard normal
for convenience)

“Affine flow” = “general Gaussian distribution” in n-d

Y T+b
0 /\
: N / .
0 b
0

Hands-on 1:

https://colab.research.google.com/drive/1iwCVXF9jeJ8JAqPg_7PV07IPgLk8jEb3?usp=sharing

How can we ensure bijectivity in 1-d for nonlinear functions?

One possibility:

y s |4 877N@)
Neural Spline Flows (Durkan et al. 2019) 7(%) = (/" (#)-

det——
or

Flow function: [~ (%)

—— RQ Spline

Inverse

a®E) gy, @D —g®)[sMe2 L sME(1 —g)]
BR(e) Y T S 1 60D 1 60 — 25MI]¢(1 — €)

® Knots

of~1(3)

or

Derivative:

d a(k)(g) B (S(k))2 [5(k+1)€2 i 23(k)§(1 =Y 5(k)(1 - §)2]
dz [5(’“)(5)] B [s(k) + [5(k+1) + §(k) — 23(k)]§(1 L 5)]2

-B 0 B
which passes thIOTlgh the knots, with the given derivatives at the knots. Defining s, =
(y* T —y*)/(z*t — 2F) and £(z) = (z — 2*)/(z*T! — z¥), the expression for the rational-

How can we ensure bijectivity in 1-d for nonlinear functions?

Another possibility: Use CDFs
f(y) = CDF; (CDF,(y)) f~!(z) = CDF;'(CDF;(x))

How can we ensure bijectivity in 1-d for nonlinear functions?

Another possibility: Use CDFs

f(y) = CDF; (CDF,(y)) f~!(z) = CDF; ' (CDF;(x))
N
CDFl(.’II) — CDFA.’(O:I)(:II) CDFj(z) = Z w;j - CDFJ\"(#a:m)(‘r)
i=1
1 e 1 -

How can we ensure bijectivity in 1-d for nonlinear functions?

Another possibility: Use CDFs 0,1 >R R—[0,1]
f(y) = CDF; '(CDF4(y)) f~'(z) = CDF; ' (CDFy(x))
X
CDFl(.'L') — CDFN ‘2(-7:) = Z w;j - CDFJV(#iIGi)(‘r)
i=1
T - Bl R -———F | B
— B
-B 0 B .

How can we ensure bijectivity in 1-d for nonlinear functions?

Another possibility: Use CDFs 0,1 5R R [0,1]
f(y) = CDF; ' (CDF,(y)) f~'(z) = CDF; ' (CDF3(z))

Example: Use weighted sum of “logistic distributions” instead of Gaussians for simplicity

i B 1 elr—n)/s — p=55=2
pc logistic — : : (l + 6(1_“]/3)2 0.25 : Z:g’i:i 1
—_— p=6,5=2
020 F pn=2s=1"7
1
Cdflogistic == 1+ e—(x—n)/s
Cdfl;:v,istic [“ =0,s= l(}](y) = l()g(y) — log(l() —y) 0.00° 0 5 : 10 15 2

f—l(I) = C(lfl_l(Cde(l)) = lOg(Z u'-iCdflogistic.;t,.s.)_log(l'o_z u"‘a'Cdflogistic.p,_.s,')

i 1

How can we ensure bijectivity in 1-d for nonlinear functions?

Another possibility: Use CDFs 0,1 >R R—[0,1]
|7(s) = cOF;*(CDF, ()

[f‘l(a:) = CDF{I(CDFQ(J:))]

e

Example: Use weighted sum of “logistic distributions” instead of Gaussians for simplicity

elz—p)/s

(1 ef=—m75)2

1
pdflogistic — ':

1
14 e—{(x—p)/fs

Cdflogistic ==

e 0 5 10 15 20
(H

cdf =L . [=0,s = 1.0|(y) = log(y) — log(1.0 — y)

logistic

1

f— . ('l) — Cdfl_ : (Cdf'l ('l)) = lOg(Z u'-iCdflogistic.p. L5)_log(1 ‘O_Z wiCdflogistic.u, 8)

How to invert bijective function numerically?

Transform to root finding problem:

Want to find inverse of g(x), but only have access to g(x):
Want: =g '(y)

solve: F(z)=g(z)—y=0

y is given, vary x until solution found

How to invert bijective function numerically?

Transform to root finding problem: One option: bisection

Problem: not differentiable
Want to find inverse of g(x), but only have access to g(x):

F(x)
Want: =g '(y)
solve: F(z)=g(z)—y=0

y is given, vary x until solution found

How to invert bijective function numerically?

Transform to root finding problem: Second option: Newton iterations

Actually differentiable
Want to find inverse of g(x), but only have access to g(x):

Want: =g '(y)

solve: F(z)=g(z)—y=0
_9(x) -y

F(z) _
' g (x)

o _ , x =z, — x
y is given, vary x until solution found RELTER R T

How to invert bijective function numerically?

Transform to root finding problem: Second option: Newton iterations

Actually differentiable
Want to find inverse of g(x), but only have access to g(x):

Want: =g '(y)

solve: F(x)=g(x)—y=10 F(x) o glz)—y

Totl = T€np — w7~ = ITn — (]'(.l)

y is given, vary x until solution found F'(z)

f_l(I) = Cdfl_l(('de(l)) = lOg(Z u'-iCdflogistic.;A.,s.)_log(l-o_z '""‘iCdflogistic.;t,,s,) analytic fo_l(‘r)f M

-1
i N ox

0= (Sl s Wy by e ve s SN u“Na/"J\')

How to invert bijective function numerically?

Transform to root finding problem: Second option: Newton iterations

Actually differentiable
Want to find inverse of g(x), but only have access to g(x):

Want: =g '(y)

solve: F'(x) = g(x)—y=0 F(x) o g(x) -y
g9 (x)

Ipntl = Tp —

y is given, vary x until solution found

f_l(I) = Cdfl_l(('de(l)) = lOg(Z u'-iCdflogistic.;A.,s.)_log(l-o_z u"iCdflogistic.;t,,s,) analytic fo_l(‘r)ﬁ af({l("-')

ox

i 1

7 7 i - F(.l.) — . f—l (.l‘) — _y 0= (Sla'wlfl-l‘ls cees SN u“NallJ\')
o] | - mn - “%n ’
@)

F'(x)

numerical 7. 22

dy

NE R e df(y) 1.0
— T, = = i
z, = fy) T dy 6} 8fs;"II~-«)[9] differentiable «
HI

https://colab.research.google.com/drive/1XPOrfbcbe22octvLLYP_9XQSfEMOFnCg?usp=sharing

